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Abstract—Workload co-location has become the de-facto ap-
proach for hosting applications in Cloud environments, leading,
however, to interference and fragmentation in shared resources
of the system. To this end, hardware disaggregation is introduced
as a novel paradigm, that allows fine-grained tailoring of cloud
resources to the characteristics of the deployed applications.
Towards the realization of hardware disaggregated clouds, novel
orchestration frameworks must provide additional knobs to
manage the increased scheduling complexity.

We present Adrias, a memory orchestration framework for dis-
aggregated cloud systems. Adrias exploits information from low-
level performance events and applies deep learning techniques
to effectively predict the system state and performance of arriv-
ing workloads on memory disaggregated systems, thus, driving
cognitive scheduling between local and remote memory allocation
modes. We evaluate Adrias on a state-of-art disaggregated testbed

and show that it achieves 0.99 and 0.942 R2 score for system state
and application’s performance prediction on average respectively.
Moreover, Adrias manages to effectively utilize disaggregated
memory, by offloading almost 1/3 of deployed applications with
less than 15% performance overhead compared to a conven-
tional local memory scheduling, while clearly outperforms naive
scheduling approaches (random and round-robin), by providing
up to ×2 better performance.

Index Terms—Memory disaggregation, Data placement, Deep
Learning, Cloud Infrastructures, Orchestration, Interference

I. INTRODUCTION

Cloud computing has been established as the new standard

for application deployment due to the flexibility and cost

effectiveness it offers [60]. Cloud systems typically suffer from

high resource under-utilization, due to the strict performance

requirements of deployed applications, which push providers

to dedicate machines for guaranteeing performance [34], [74],

[82]. To tackle this under-utilization problem, multi-tenancy

[18], [19] has been adopted as the de-facto deployment model

for Cloud applications. However, multi-tenancy leads to inter-

ference in shared resources, which in turn induces variability

and degradation in the performance of applications [25], [26],

[59], [65]. As a result, intelligent orchestration and allocation

of computing resources is required [25], [44], [58], [85],

where complex cluster-wide software mechanisms control how

hardware resources are assigned to applications.

Cloud systems typically involve two layers of resource

management which are orthogonal to each other and can be

applied independently, i.e., L1) The initial static allocation of

resources and placement of incoming applications (so called

resource orchestration) and L2) the dynamic adjustment of

allocated resources to meet requirements of applications (so

called runtime management). Mechanisms in the first category

should be able to identify the resource requirements of incom-

ing (possibly unknown) applications, and avoid placements

that lead to resource interference, while also considering

the underlying HW heterogeneity [9], [25]–[27], [61]. The

second layer includes runtime mechanisms that dynamically

optimize the performance of running applications, such as SW

controllers [19], [29] and/or OS-integrated extensions [87],

[91] that regulate resources of deployed applications.

Despite their sophistication, software only mechanisms have

been proven incapable of fully resolving the resources under-

utilization problem, that is mostly a bi-product of the diverse

computational requirements of cloud workloads combined

with the fixed resource proportionality of cloud-server sys-

tems. As a consequence, it is common in modern data-centers

to observe a fragmentation of resources that are available yet

not consumable by any workload [42], [46].

To overcome this resource wall challenge, hardware disag-

gregation has been proposed as a new design paradigm [4],

[45], [75], [76]. In a disaggregated cloud, the underlying HW

infrastructure is organized as pools of heterogeneous resources

that can be composed on-demand into compute units tailored

around workload-specific requirements. Recent scientific re-

search has examined the applicability of the disaggregated

concept to several components of modern Cloud and HPC

infrastructures, including processing units [10], [21], [33],

[73], memory [32], [57], [72], [84] and storage [10], [48],

[53], [66]. In addition, rack-scale operating systems [81] and

runtimes [14] have been proposed for dynamically managing

disaggregated resources.

Need for memory orchestration: This paper focuses on

memory-disaggregated infrastructures addressing the newly

induced problem of interference-aware memory orchestration.



In a memory disaggregated system, orchestrated placement

to memory resources is required to minimize the impact

on applications performance due to the increased latency in

accessing remote memory [50]. While prior research efforts

have thoroughly examined dynamic runtime mechanisms (L2

– e.g., page migration/prefetching) for memory-disaggregated

and multi-tiered memory systems [47], [62], [91], limited

work has been conducted with respect to the problem of

interference-aware memory placement in disaggregated clouds

(L1), since existing scheduling approaches [25], [26], [41]

neither target memory orchestration nor been have extensively

examined for such composable systems. However, orchestra-

tion of memory resources in disaggregated environments is

critical for two main reasons: i) In presence of interference,

determining an efficient memory mapping can significantly

improve the overall performance of the application and ii)

Optimal initial allocation of memory can minimize the amount

of data travelling back and forth through the network, e.g., in

applications that present a low ratio of hot versus cold pages

Paper Contributions: We introduce Adrias1, an interference-

aware memory orchestration framework that enables ef-

fective/optimized data placement decisions on memory-

disaggregated cloud infrastructures. The key features of Adrias

could be summarized through: i) its ability to forecast the

tendency of system-wide metrics in the future, thus driving

proactive memory orchestration decisions; ii) its accurate per-

formance predictions for deployed applications w.r.t. memory

heterogeneity (local/fast vs. remote/slow DRAM) and interfer-

ence and iii) its power to leverage disaggregated memory with

minimal impact on the performance of deployed applications

without the employment of dynamic memory management

mechanisms. Adrias exploits system-level performance moni-

toring information and leverages deep learning approaches to

place incoming applications on the pool of available memory

resources. To the best of our knowledge, this is the first

work tackling the problem of interference-aware memory

orchestration, i.e. applications’ data placement on memory-

disaggregated cloud systems. Our main contributions are:

● We perform an in-depth exploration and provide new in-

sights on the performance capabilities of the state-of-art

ThymesisFlow disaggregated memory testbed [72]. We char-

acterize ThymesisFlow under various interference scenarios

for a set of in-memory cloud workloads, namely Redis,

Memcached and several Spark analytics and analyze the

impact of memory disaggregation w.r.t. their performance.

● We propose two deep learning models tailored to disaggre-

gated memory systems; i) a system state prediction model

that forecasts the tendency of monitored performance events

in the future and ii) a performance prediction model that

estimates the performance of applications, when deployed

on memory disaggregated systems. Using these models, we

are able to accurately predict the tendency of system metrics

and performance of incoming applications, achieving up to

0.999 and 0.942 R2 scores respectively.

1Adrias was a WWII battleship that hit an underwater mine and was split in half. In spite of the damage suffered, Adrias managed to survive.

● We present Adrias, an orchestration framework for memory

disaggregated systems. By leveraging the developed predic-

tion models and a simple, yet effective, scheduling logic,

Adrias employs remote memory efficiently, by offloading

up to 35% of best-effort applications with less than 15%

performance degradation compared to a local DRAM mem-

ory allocation approach and also provides comparable QoS

guarantees for latency-critical ones.

II. RELATED WORK

Memory Disaggregation: Memory disaggregation is not

a new subject of study, with several approaches appearing

over the years. There are fully software-based approaches

that expose remote memory as Linux swap devices or rely

on RDMA transfers to be explicitly programmed for moving

memory blocks to/from remote memory [3], [32], [52], [68],

[77], [81], [86]. Efficient use of RDMAs often involves having

to reserve and pin chunks of memory beforehand, leading

to inefficient utilization of memory resources. A number of

full hardware solutions have also been proposed [14], [35],

[72] that although different, they are all mostly based on

intercepting low level CPU memory operations to process and

forward them towards remote systems.

▸ In this work we focus on the ThymesisFlow open-source

hardware [72] that requires zero modifications to existing ap-

plications and it integrates seamlessly with the Linux memory

management system.

Cloud Resource Orchestration: Prior research works have

proposed solutions both for static resource allocation of appli-

cations arriving on a cluster [25], [26], [31], [41], [44], [89], as

well as dynamic regulation of allocated resources of workloads

throughout execution [19], [43], [51], [67], [71], [80], [96].

Moreover, production ready resource orchestrators have also

been presented [11], [23], [40], [83], [85], showcasing the need

for efficient supervision of resources due to interference in

shared resources. However, these works focus on typical cloud

infrastructures, that consist of conventional servers. Other

scientific approaches examine the problems of application

orchestration on disaggregated memory systems [54], [69]

and performance modeling [93], however they either rely on

emulated prototypes [93] or totally neglect the implications of

resource interference in shared resources [54], [69].

▸ Adrias goes a step further, by providing an interference-

aware orchestrator for memory disaggregated systems, de-

ployed and evaluated over a real, state-of-the-art testbed.

Memory Management of Tiered Systems: Lately, man-

agement of multi-tiered systems and/or disaggregated, het-

erogeneous resources inside data-center facilities is attracting

more attention. Recent research efforts focus on mechanisms

that provide dynamic disaggregated memory allocations for

VMs [15], [16], [64], efficient prefetchers and replacement

policies [47], [55], [56], [62], [63], [91] and cost/performance

tradeoffs between heterogeneous memory pools [87].

▸ These works belong to runtime management techniques

(L2), are orthogonal to Adrias, since they operate on different

levels of optimization and can be utilized complementary.

https://en.wikipedia.org/wiki/Greek_destroyer_Adrias_(L67)
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Fig. 1: ThymesisFlow [72] architecture overview

III. DISAGGREGATED MEMORY TESTBED

Prototype Setup: We replicate the ThymesisFlow [2], [72]

memory-disaggregated prototype consisting of two AC922

IBM® POWER9™ servers, featuring two sockets with 64

logical cores, 10MB L3 cache per socket and 1.2TB DRAM

@2666MHz. Both servers run RHEL (kernel v5.8.0) and

are equipped with an Alpha Data 9V3 card, that features a

Xilinx Ultrascale FPGA. The FPGAs are connected back-to-

back using a single copper cable that models a 100Gbps point-

to-point connection in a circuit switched network fabric.

Hardware Architecture: Fig. 1 depicts the hardware infras-

tructure of the ThymesisFlow prototype. On both servers

the FPGAs are interfaced to the CPU bus using the Open-

CAPI [22] prototcol, that enables coherent access to the CPU

memory from an accelerator. The interface between CPU

and FPGA is based on 8x25Gbps serial links for a total of

200Gbps. On the borrowing side, the OpenCAPI accelerator

is mapped at a specific physical location in the CPU bus that

can be then hot-plugged as regular memory. On the lender

side the OpenCAPI accelerator accesses the memory on behalf

of the borrower by totally bypassing the lender CPU, thus

avoiding any unnecessary overhead. ThymesisFlow enables

byte-addressable disaggregated memory that does not require

any software support such as in the case of solutions based on

RDMA [32], [62] and those enabling disaggregated memory

by means of a Linux swap device [3], [86]. Every time a

memory access performed at the borrower side causes a last

level cache miss or flush, the cache line is refilled/flushed via

remote memory. An OpenCAPI transaction (read or write) is

generated by the borrowing CPU and received by the FPGA.

Here the transaction address is modified to a valid one at

the lender side and the operation traverses the circuit network

(100Gbps) towards the FPGA at the remote node, where the

OpenCAPI transaction is re-issued on the bus towards the

memory. Responses in case of a read follow the reverse path.

Software Architecture: From the software standpoint, the

two servers in the prototype are not symmetric. ThymesisFlow

enables the borrower-lender model, where the lender gives

away part of its local memory for access from a remote

borrower. On the borrower server, ThymesisFlow exposes

disaggregated memory as a CPU-less NUMA node, that can be

attached using the libthymesisflow library. This allows

users to avail of all Linux default NUMA-aware functionali-

ties. Alternatively, users can either hotplug the disaggregated

memory to the running Linux system in the borrower server, or

keep it out from the Linux kernel memory management system

and use custom memory allocators. In this paper, we hotplug

the disaggregated memory and we control how applications

access it by means of ad-hoc Linux cgroups.

IV. CHARACTERIZING MEMORY DISAGGREGATION

We analyze the impact of resource contention on the

ThymesisFlow memory disaggregation testbed. We unveil im-

portant insights concerning both potential hardware limits of

memory disaggregated systems and the impact of interference

on the performance of applications leveraging remote memory.

A. Examined Workloads

Cloud infrastructures typically host two types of workloads,

best-effort (BE) and latency-critical (LC) ones. The former

require the highest possible throughput while the latter have

strict QoS guarantees. To cover both types of applications, we

examine the following open-source, in-memory applications:

● Redis (LC): Redis [17] is a NoSQL key/value store that

keeps data in memory. We examine the impact of local and

remote memory allocation modes on Redis server instances,

serving user requests.

● Memcached (LC): Memcached [28] is a distributed mem-

ory object caching system, used to cache data and objects

in the main memory.

● Spark in-memory analytics (BE): Apache Spark [94] is an

analytics engine for large-scale data processing. We evaluate

17 different spark applications derived from the HiBench

benchmark suite [39], using the default Spark parameter

configuration and the small dataset as described in [39].

We study the impact of disaggregated memory only on the

executor processes, which perform all the task computations.

Load generation: We use asymmetric load generation on the

underlying system, by co-locating LC, BE and iBench [24]

interference microbenchmarks, as described in SectionV-B1.

For LC workloads, we utilize the memtier_benchmark [1],

i.e. the official Redis Labs’ utility for load generation of

NoSQL key-value databases. Tail latency is measured using

a set of closed-loop memtier clients [79] over asymmetric

co-located workloads. More in detail, our setup spawns 4

threads, where each thread spawns 200 clients, i.e. eliminating

client-bias [49], [97]. We use a SET:GET ratio of 1:10 and

generate a constant load of 10000 and 40000 requests per

client. This configuration leads to a total of approximately

30.000 and 100.000 operations served per second for Redis

and Memcached respectively, which closely relate to realistic

loads found in production, e.g., Facebook services [5], [90].

B. Limits of HW memory disaggregation on ThymesisFlow

We first assess the capacity of our testbed while performing

memory operations, by examining the effect of repeated data

movement between the local and remote system. In more

detail, we spawn an increasing number (1 to 32) of memory

bandwidth interfering micro-benchmarks [24] and force them

to use memory borrowed from the remote node, thus gen-

erating traffic on the link between the FPGA devices in the

ThymesisFlow testbed. To highlight interference effects, we

monitor system-level metrics related to the local system and
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Fig. 2: Capacity of our memory disaggregated testbed for different stressing scenarios. Different color shades denote different

number of memory bandwidth stressing microbenchmarks [39] deployed on remote memory mode.

the network interconnection. Specifically, for the local system

we gather the Last Level Cache (LLC) loads and misses, and

the memory loads and stores, whereas for the FPGAs we

measure the number of flits (32B) received (rx) and trans-

mitted (tx), and the average latency on the ThymesisFlow

communication channel. Fig. 2 shows the results and also

reveals three important remarks (R1-R3).

R1) Bounded throughput: The throughput of the disag-

gregated memory reveals an upper bound in the amount of

transferred data, with a cap of approximately 2.5Gbps2. This

value reveals that remote memory has approximately a three

orders of magnitude lower bandwidth threshold compared to

conventional DDR4 memory systems, which can support a

theoretical of 120GBps sustained memory bandwidth [78].

R2) Communication latency: For low to medium amounts

of generated traffic (1 up to 4 memory bandwidth mi-

crobenchmarks) the average latency on the communication

channel follows a steady state of approximately 350 cycles/sec.

However, in cases of increased traffic (8 up to 32 micro-

benchmarks) the latency is almost tripled, reaching a yield

plateau of 900 cycles/sec. Until the 4 micro-benchmark, the

prototype is capable of handling the memory requests received

and the latency remains constant across all executions, while

bandwidth increases steadily. From 8 micro-benchmarks on-

wards, the channel is saturated (bandwidth plateau) and the

back-pressure mechanism implemented in the FPGAs starts

delaying memory transactions, hence the step in latency.

R3) Local system interference: Application deployment

on remote memory also induces interference on the memory

hierarchy of the local system. This is expected for chip-level

metrics (e.g., LLC Loads and Misses), as the cache memory

hierarchy lies beneath the abstraction layer of local/remote

memory accesses. Regarding memory loads and stores, remote

pages are memory-mapped and handled through an enhanced

numactl memory controller and, thus, all remote traffic is

handled on-chip by memory controllers of the local node.

C. Workload characterization

We further quantify the impact of local and remote alloca-

tions on the performance of our applications when executed

in isolation and under different interference scenarios.

Execution in isolation: For LC applications (Redis, Mem-

cached), we examine the 99th and 99.9th response percentiles

2Given that each flit is 32B, we compute rx and tx bandwidth in b/s by
multiplying with 32*8 [72].
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Fig. 4: Tail latency of LC applications with increasing RPS

when executed in isolation on local and remote memory.

(tail latency) under different loads by scaling the number of

clients requesting Set and Get operations. For BE (Spark)

ones, we examine the execution time of applications for the

two memory allocation modes. Fig. 3 and Fig. 4 show the

results for LC and BE applications respectively.

R4) Non-uniform performance variation: For Redis and

Memcached applications we confirm the results reported in

prior work [72] that local and remote memory provide almost

identical curves in terms of tail latency, for all the con-

figurations examined. This similarity in performance occurs

due to the fact that in-memory caches perform many small

read and write memory accesses with minimal bandwidth

pressure requirements, which can be easily attained based

on the specifications of our disaggregated system. For Spark

applications, we notice an average degradation of 20% over

all our examined benchmarks, which, however, is not uniform

across all benchmarks tested. For example in Fig. 3, we

observe that nweight and lr suffer almost a ×2 slowdown

when ran on remote memory, whereas others, such as gmm and

pca experience less than 10% performance degradation. This

reveals that remote memory is suitable for some applications



while it is not the best options for others.

Execution under interference: Last, we investigate the rela-

tive performance impact of resource contention on different

levels of the system hierarchy, between local and remote

memory. We deploy the same application and measure its

performance on local and remote memory under the four inter-

ference scenarios namely: cpu, l2, l3 and memBw. For both

modes (local and remote), we spawn a different number (1 up

to 16) of resource trashing micro-benchmarks [24], targeting

different resources on the system (CPU, L2-cache, Last-Level-

Cache and Memory Bandwidth), i.e., if the application is

deployed on local memory, so are the ibench microbenchmarks

and vice-versa. Fig. 5 shows the respective results, where the

density of each cell depicts the performance slowdown of the

respective scenario between local and remote memory.

R5) Performance chasm under contention: After a certain

threshold (typically 16 for L3 and > 8 for memBw micro-

benchmarks), the same amount of interference results in much

higher performance degradation on the remote memory, reach-

ing up to ×4 additional slowdown in certain cases. Combined

with the results presented in Fig.2, we observe that this thresh-

old corresponds to the saturation point in the communication

channel of the FPGAs. This is true both for BE and LC

applications, with the latter appearing to be more resistant

to interference effects. This shows that remote memory gets

saturated much more easily than local DRAM, which also

confirms our observation regarding the limitation of remote

memory bandwidth made in Section IV-B.

R6) LLC vitality: Contention on the LLC has the greatest

negative impact for the majority of BE applications. Interfer-

ence on the LLC leads to consecutive misses, which in turn are

translated to increased memory bandwidth due to read/write

accesses from/to the main memory. While both LLC and mem-

ory bandwidth end up in generating traffic on the channel, we

see that data locality and caching is of paramount importance,

as intense LLC contention (16 spawned microbenchmarks)

leads to the worst possible performance degradation for the

majority of the Spark applications. Moreover, a sustained and

increased interference effect on the memory network bus, leads

to gradual performance degradation, relative to the extent of

the underlying interference. Last, since in-memory databases

rely heavily on pointer chasing operations, which introduce

poor on-chip spatial locality [20], [38], they appear to be

less cache sensitive, revealing higher response times only on

memory bandwidth interference scenarios.

R7) Stacking interference effects: For certain benchmarks

(e.g., nweight, sort, kmeans), we also notice a perfor-

mance gap between local and remote memory when imposing

interference on lower levels of the system hierarchy (i.e., CPU

and L2 cache). We call this a stacking interference effect. For

such applications, we expect the remote memory allocation

mode to be a prohibitive option under realistic scenarios,

where different resources are congested simultaneously.

D. Affinity of system & workload metrics

Section IV-B revealed that low-level system metrics can

provide insightful information regarding the state of the sys-

tem. Taking also into account the high performance variability

shown in Fig. 5, it is evident that being able to project low-

level performance events to higher-level metrics of interest

(e.g., application slowdown), would allow us to estimate per-

formance solely through the assessment of lower-level metrics.

To investigate whether such a relationship exists, we examine

the correlation between low-level system and high-level appli-

cation metrics prior and during execution when deployed using

the remote memory allocation mode. Specifically, we generate

several deployment scenarios (similar to the ones described

in Section V-B1) by randomly co-locating different ibench

workloads with the examined benchmarks, and we keep track

of the underlying system metrics during execution.

We evaluate the linear correlation between the average

system performance metrics 120 seconds prior to application

scheduling (x), as well as during execution (x̃), with the appli-

cation performance, using the Pearson’s correlation coefficient.

For Spark applications we consider as performance the total

execution time, whereas for Redis and Memcached we study

the end-to-end latency, the 99th and the 99.9th percentiles.

Fig. 6 shows the respective results and clearly reveals the

existence of a correlation between certain metrics and the

performance of applications. What is of great interest is that

runtime metrics reveal a much higher correlation compared to

the historical ones, forming our concluding remark:

R8) Predictive monitoring capability: Proactive runtime

assessment of the state of the underlying system is feasible

and provides useful insights both regarding the system itself,

as well as the performance of deployed applications.

V. ADRIAS DESIGN

The main goal of Adrias is to efficiently orchestrate ap-

plications arriving in a disaggregated system, by deciding

between local and remote memory modes. Fig. 7 shows an

overview of Adrias’ architecture. The Watcher component

continuously monitors and gathers performance events of the

underlying system. The Predictor exploits Long Short-Term

Memory (LSTM) models for forecasting the future state of

the system and performance of deployed applications. Finally,

the Orchestrator utilizes the predictions to decide the memory

allocation policies accordingly.

A. Watcher

The Watcher component is responsible for gathering per-

formance events from the underlying hardware infrastructure,

providing insights on the data flowing through the memory

hierarchy of the system. Focus is given on cache- and memory-

related performance counters, as well as metrics that depict

the status of the communication channel between the local

and the remote memory sub-system. Driven by our analysis

in Section IV-B, we monitor the following metrics: Last-

level cache misses (LLCmis), Last-level cache loads (LLCld),

Local DRAM memory loads (MEMld), Local DRAM memory
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redis
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Fig. 5: Benchmark performance characterization under interference on local and remote memory. The heatmap density denotes

the execution time and 99th percentile slowdown of remote vs. local execution for BE (orange) and LC (teal) applications

respectively, under different interference scenarios (cpu, l2, l3, memBw) using iBench [24] contention microbenchmarks.
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Fig. 6: Correlation of historical (x) and runtime (x̃) system

performance events with performance of deployed applications

on remote memory.

stores (MEMst), FPGAs communication’s channel average

latency (RMTlat ) and FPGAs receive (RMTrx) and transmit

(RMTtx) throughtput. For the CPU performance events of the

local system, we utilize Linux’s perf tool, while the events

related to the FPGA channel are directly provided by the

ThymesisFlow framework [72]. We set the monitoring interval

equal to 1 sec, which, as shown in [30], is a ”sweet spot”

between inference overhead and QoS violations increment.

B. Stacked-LSTM Predictor

The Predictor forecasts the future state of the disaggregated

system and predicts the performance of incoming applications

w.r.t. the memory allocation mode (local vs remote). The

prediction process consists of two phases, offline and online.

The offline phase (design-time) involves three main activities:

1) collection of representative system metrics’ traces that cor-

Fig. 7: Overview of Adrias architecture

respond to ”realistic” execution scenarios ( 2 ), 2) generation

of the dataset used for training and testing ( 3 ) and 3) design,

train and validation of the prediction models ( 4 ). In the online

phase (run-time), the Predictor utilizes the trained models to

predict the aforementioned prediction metrics of interest.

1) Offline phase: Interference-Aware trace collection: The

first step of the offline phase concerns the collection of

interference-aware traces of low-level system metrics (by

utilizing the Watcher component of Section V-A). The data

collected is used as input dataset for training our deep learning

models, described later in this section. This step is vital for the

overall functionality of Adrias, since gathering representative
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mance metrics over time for three representative scenarios.

Adrias’ data acquisition scheme captures different congestion

phases, both within the same and among different scenarios.

data is essential to increase accuracy of any DNN model.

Scenario generation: We simulate different execution sce-

narios by employing a random scenario generation approach.

Each scenario is characterized by a spawn interval {t1,t2},
which denotes the arrival time range of consecutive application

deployments on the system. For instance, a spawn interval of

{5,40} means that each new application arrives after a random

interval between 5 and 40 seconds. Within each interval we

pick a random benchmark either from the examined applica-

tions, or from the iBench pool and we deploy it randomly on

local or remote memory. Through iBench micro-benchmarks,

we aim to replicate supplementary interference scenarios that

cannot be directly generated by our examined LC and BE

workloads. To capture the high dynamicity found in Cloud

environments [74], we examine different arrival rates, with sets

ranging from {5,20} up to {5,60}, where the former imitate

more congested scenarios and the latter indicate a more relaxed

application arrival pattern. Fig. 8 depicts three exemplary but

representative scenarios, assuming heavy ({5,20}), moderate

({5,40}) and less ({5,60}) congested application deployment

distributions3. As shown, the specific setup exposes a wide

variety of phases, both regarding the number of concurrent

applications and the spectrum of the monitored metrics.

Insights from scenario execution: Overall, we have sim-

ulated 72 diverse 1-hour scenarios with different spawning in-

tervals. Fig. 9 and Fig. 10 show the performance distribution of

our examined benchmarks over all the 72 execution scenarios.

▸ Regarding Spark benchmarks (Fig. 9), the use of remote

memory has a substantial performance impact compared lo-

cal DRAM, since the distributions for the scenarios using

remote memory expose a tendency towards higher values.

However, certain benchmarks (e.g., gmm) present overlapping

performance distributions, between local and remote memory.

3Through the random scenario generation, the maximum number of appli-
cations running simultaneously on the disaggregated testbed is 35, with Spark
applications spawning 2 worker instances with 4 threads each.
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Fig. 10: Distribution of total execution time to serve 10.000

requests (left) and of 99th and 99.9th percentile of response

time per request (right) for Redis and Memcached over dif-

ference execution scenarios.

This denotes that there might be certain cases where remote

memory could provide better performance than local (even if

local memory latency is in the order of ∼ 80ns and remote

memory latency ∼ 900ns), due to high contention in the

memory bus of the latter compared to low interference in the

communication channel of the former. Moreover, considering

that BE applications typically do not have strict performance

requirements, we would be able to sacrifice performance to

take advantage of the disaggregated memory. In contrast, there

are benchmarks (e.g., nweight), which, as also described in

Sec. IV-C, do not take advantage of remote memory at all,

due to stacking interference effects.

▸ For Redis and Memcached, we examine the 99th and

99.9th percentiles, which form typical QoS requirements of

LC applications. We observe that remote memory provides

higher response times, however we again notice overlapping

performance distributions between the two modes. Overall, we

anticipate disaggregated memory to be prohibitive for stricter

QoS constraints, especially in the Redis case. However, when

more relaxed QoS requirements are set, remote memory could

be leveraged without violating any constraints.

2) Offline phase - Prediction models training: Adrias uti-

lizes a stacked-model architecture by combining two pre-

diction models one after another: a system state prediction

model, that forecasts the future values of low-level system



(a) System’s state model
architecture

(b) Performance prediction model architecture

Fig. 11: DNN architecture of (a) system’s state and (b) ap-

plication’s performance prediction models. Parentheses shows

the #features and size of each layer.

metrics, and a performance prediction model, that receives

these predictions (among others) and infers the performance of

an application if deployed on local or remote memory. Fig. 11a

and Fig. 11b show an abstract view of the models’ architecture.

System State Model: The rationale behind this model orig-

inates from the observations made in Section IV-D that run-

time system metrics are more closely correlated to applica-

tions’ performance. The model receives as input the System

State – S, a two-dimensional feature vector containing the

time-series values for each examined metric over a history

window of length r. We define the system state by considering

the metrics monitored by the Watcher component (V-A). As

output, the model provides the Predicted System State – Ŝ, a

vector that corresponds to the predicted mean value of system

performance events over a horizon window z. After evaluating

different values for r and z , we have determined that a value

of 120 seconds provides useful insights both regarding the

history and the horizon windows.

Due to the sequential nature of the input, we utilize Long

Short-Term Memory (LSTM) [37] layers as the backbone of

the model, which has been proven to be extremely accurate

in forecasting system level metrics under interference and

for deep horizons [30], [65]. The input feature vector is

first processed by 2 LSTM layers that identify dependencies

between the time-series data and the results are passed to

a triplet of non-linear blocks, that combine fully-connected

layers with ReLU activation functions, batch normalization

and dropout layers to expose non-linearity and avoid overfit.

Performance Prediction Model: This model forecasts the

performance of incoming applications, if deployed on local

or remote memory. We follow a universal modeling approach,

i.e., we build a unique model for all the BE and one for all the

LC applications, where the former predicts the execution time

and the latter the 99th response time percentile. Although prior

research works typically follow a per-application modeling

approach [8], [25], [92], we argue that this is not efficient (yet

could be more accurate), since building a performance model

per application is too time-consuming and requires simulating

scenarios for each new application and maintaining a single

model per workload imposes serious scalability issues.

Modeling and predicting the performance of applications is

a non-trivial task and requires awareness regarding: i) the

dynamics and sources of interference on the underlying system

and ii) the inherent characteristics of the application itself

and how these characteristics get affected from the current

and future status of the system. To uncover this information,

the performance models receive as inputs four parameters:

The past and predicted system state feature vectors S and

Ŝ, the deployment mode (local/remote) and the application’s

signature – k, which is a unique identifier per application, that

contains the sequences of monitored metrics during applica-

tion’s execution in isolation on remote memory mode.

The time-series inputs (S,k) are individually processed by

two LSTM layers that identify important features in the

sequential data. The output results are then concatenated with

the deployment mode and the future system state vector Ŝ

to form the hidden representation, which is then processed

again by a triplet of non-linear blocks to provide the final

performance prediction.

C. Orchestrator

The Orchestrator leverages the predicted metrics to proac-

tively assess the state of the system and choose the disag-

gregated memory policy for deployed applications accord-

ingly. Its design is driven by two fundamentals: i) Cloud

policies typically apply QoS guarantees for LC workloads

and best-effort execution for batch applications [25], [58]

and ii) Disaggregated memory systems hide dangerous pitfalls

(characterization process of Section IV), i.e., disaggregated

memory imposes significant performance overhead if utilized

recklessly, especially when multiple applications compete over

the available resources and, thus, should be leveraged wisely,

targeting applications that benefit the most out of it. We tackle

the first aspect directly, by introducing a straightforward, yet

effective, orchestration logic for BE and LC applications,

while the second one is addressed indirectly, through the

automatic feature extraction of Adrias’ prediction models.

When a new workload is deployed on the system, if Adrias

does not own any prior information regarding its application

signature, it schedules it on the remote memory, captures and

stores the respective metrics. Otherwise, it communicates with

the Predictor and receives the estimated execution time (for

BE) or 99th percentile (for LC) for local and remote memory

modes. For BE, we utilize the following discrete function to

decide the deployment mode:

modeBE =
⎧⎪⎪
⎨
⎪⎪⎩

local, if t̂local < β ∗ t̂remote.

remote, otherwise.
(1)

where t̂ is the predicted execution time and β is a slack param-

eter depicting the maximum performance loss margin that we

are willing to sacrifice to leverage remote memory. Choosing β



Event R2

LLCmis 0.9969
LLCld 0.9995

MEMld 0.9641
MEMst 0.9983
RMTlat 0.9977
RMTrx 0.9871
RMTtx 0.9876

Avg. 0.9932

TABLE I: R2 score per

performance event

Fig. 12: Performance events pre-

dictions’ regression residuals

depends on two factors. First, the application itself, as various

applications present diverse performance characteristics when

deployed on remote memory (Sec. IV). Second, the underlying

interference, as overwhelming the remote memory requires

greater performance degradation tolerance.

For LC workloads, Adrias aims to utilize remote memory

without violating a pre-established QoS constraint. The mem-

ory allocation mode is chosen as follows:

modeLC =
⎧⎪⎪
⎨
⎪⎪⎩

remote, if p̂99th
remote ≤QoS.

local, otherwise.
(2)

where p̂99th is the predicted 99th response time percentile.

Particularly for LC applications, achieving QoS requirements

solely through performance assessment during deployment can

turn out to be infeasible, due to the unpredictability of the

system’s future load. In such cases, Adrias can be utilized

complementary with other runtime management frameworks,

e.g., [19], [67], [91], to dynamically adjust resources.

VI. EVALUATION

We implement Adrias4 using Python (v3.7.0), ZeroMQ

[36] and the PyTorch library [70]. Adrias imposes minimal

overhead on the system, with an average of 300MB RAM

utilization and occasional CPU usage spikes of ≈ 15%, that

correspond to predictions for newly deployed applications.

A. Accuracy Evaluation

We partition the datasets produced during simulation (Sec-

tion V-B1) in two subsets of 60% (training set) and 40%

(test set) of the samples. We examine the accuracy of the

system state and performance models for predicting the mean

value of monitored metrics over the horizon window and the

performance (execution time/tail latency) of applications.

1) System state prediction model: Table I shows the results

per metric, by evaluating the coefficient of determination [7] -

R2. Adrias achieves pretty high accuracy, ranging from 0.964

up to 0.999 R2 score and with an average of 0.993 R2 overall,

illustrating its capability to proactively assess the tendency of

system metrics in the future. Fig.12 also presents the actual

versus predicted metrics, as there exist cases where a high

4https://github.com/pl4tinum/Adrias

R2 score could be counter-intuitive [6]. This plot verifies

the strong prediction capabilities regarding the system’s state,

since the majority of the points lie on the 45o residual line.

2) Application performance prediction models: As a first

step, we train and test the performance models for BE applica-

tions, using as the future system state (Ŝ) the actual monitored

metrics, gathered during the trace collection process. Fig.13a

depicts the respective results, showing that Adrias is able to

achieve a 0.942R2 score on average, with a slightly higher

accuracy for predicting the execution time on local mode

(R2 = 0.945) compared to the remote (R2 = 0.939).

Impact of stacked models to overall accuracy: Apparently,

the actual future metrics are not available a priori during a real-

istic inference step. Thus, a reasonable question is: Should we

train the performance models using as ”future system state”

the actual system metrics, or train using propagated predic-

tions from the system state model? To answer, we examine

the prediction accuracy for different input vectors (Ŝ) during

training and testing. Fig.13b shows the results, where the pair

{x1,x2} maps to {train,test} and denotes the type of vector Ŝ

used in each phase. Specifically, None implies that Ŝ was not

fed to the model, while {120, ˆ120} and {exec, ˆexec} indicate

that Ŝ is calculated from the actual metrics or propagated from

the system state model for a window of 120s or for the full

duration of the application respectively. The pairs {120,120}
and {exec,exec} give the best accuracy, which, however, are

not pragmatic. In practice, feeding the predicted vector Ŝ

to the performance model in the training phase ({ ˆ120, ˆ120})
is the best approach. It is interesting that while the system

state model provided very accurate predictions ( 0.99R2), we

still experience an accuracy drop of 3% compared to the

theoretical maximum ({exec,exec}). Moreover, leveraging the

predicted future system yields a 2% higher accuracy compared

to historical only data ([None,None]), thus, verifying the

advantage of predictive monitoring.

Runtime accuracy: By employing the { ˆ120, ˆ120} approach,

we also show the Mean Absolute Error for BE (Fig. 13c)

and LC (Fig. 14a) applications and the actual vs. predicted

residuals (Figures 13d and 14b). Comparing the MAE with the

median performance presented in Fig. 9, the employed DNN

models are able to provide accurate performance predictions

for both BE and LC applications. Even in cases where we

observe high MAEs (e.g., gmm,lda), these errors correspond

to approximately 10% variation compared to the median values

of their performance distribution. Overall, we are able to

achieve an R2 score equal to 0.905 for BE and 0.874 for LC.

Generalization on unseen applications: Last, we test

Adrias’ universal modeling approach ability, by evaluating

accuracy using an application-granular leave-one-out

validation. Fig.15a shows the R2 score per benchmark,

when excluded during training phase. The model is able to

generalize adequately for certain benchmarks (e.g., gbt)

whereas it fails for others (e.g., lda) yielding 0.72 and

0.30 R2 scores respectively. This suggests that a continuous

collection of representative application signatures and

retraining is crucial for unknown applications. We explore the

https://github.com/pl4tinum/Adrias
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Fig. 13: Evaluation of performance prediction model (execution latency) for Best-

Effort (BE) applications
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effectiveness of three retraining approaches to improve the

accuracy on newly collected data of unseen applications, i.e.,

i) from-scratch: train the whole model from the beginning,

ii) whole-retrain: retrain all the layers of the model using

data from the unseen application and iii) partial-retrain:

update only the weights of the model that correspond to the

application’s signature. To avoid bias on the new data during

retraining, we set a one-order of magnitude lower learning

rate and we feed batches of mixed samples from seen and

unseen applications. Fig.15b shows the accuracy achieved and

time needed ( 0.8sec per epoch on a V100 GPU) for different

number of training samples for gbt application. For lower

number of available samples (16-64), whole-retrain results to

better accuracy compared to a ground-up training, whereas

for higher ones (128-512) it achieves comparable results with

less time (epochs) needed. Partial retraining does not improve

accuracy over the unseen application, showing the close

interrelationship between the application’s characteristics

(signature) with the dynamics of the system (system state).

B. Orchestration Evaluation

We compare Adrias with three other scheduling schemes,

i) Random: mode is chosen randomly, ii) Round-Robin: mode

chosen in turn between local and remote iii) All-Local: all

applications allocate local memory.

Adrias’ impact on BEs’ performance: First, we evaluate

the ability of Adrias to utilize the remote memory, without

violating the performance threshold introduced through the

slack parameter β . Fig.16 (top) shows the execution time

distribution of all the examined BE benchmarks and Fig.16

(bottom) the number of times each application got sched-

uled on the local and remote memory when using the three

schedulers and Adrias with different β slack values. For the

majority of the workloads, Random and Round-Robin sched-

ulers provide the worst performance distributions, confirming

the need for intelligent orchestration mechanisms. For high

betas (β = 1 and β = 0.9), Adrias provides identical scheduling

decisions with the All-Local approach, due to the explicit

performance deterioration of the remote memory combined

with the implicit accuracy errors of the prediction models. For

β equal to 0.8 and 0.7 Adrias achieves to effectively utilize the
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R2Score
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(a) Application-granular
leave-one-out accuracy

(b) Model (re)training accuracy over time (epochs) for
various number of samples for gbt benchmark

Fig. 15: Performance prediction accuracy for unseen applica-

tions (a) and different model retraining approaches (b).

remote memory, managing to offload approximately 10% and

35% of deployed applications with an average drop of 0.5%

and 15% in the median performance over all applications.

While the values 0.8 and 0.7 for β would imply an equivalent

degradation on the performance of applications, we observe

that this is not the case, which is attributed to the accuracy

error of the performance prediction model. Finally, for lower

slack values (i.e., β=0.6) Adrias offloads the majority of

deployed applications to remote memory, which, however,

induces significant performance degradation.

Adrias’ impact on LCs’ performance: Next, we explore

Adrias’ capability to schedule Redis and Memcached on

the remote memory, without violating a pre-established QoS

constraint. Based on Fig.10, we define five different QoS

levels (p99th response time) of various strictness, i.e., 0

up to 4 per LC application, that correspond to the 87.5th,

75th, 50th, 25th, 12.5th distribution percentiles, where Level

0 denotes the most relaxed and Level 4 the strictest QoS

constraint. Fig.17 shows the total number of violations (left)

and offloads (right) for all the schedulers. Random and Round-

Robin schedulers provide the worst possible results, since they

introduce the highest numbers of QoS violations both for

Redis and Memcached, whereas All-Local outperforms the



Fig. 16: Execution latency distribution of BE applications (top) and number of times that the application was deployed on

local and remote memory (bottom) for different scheduling logics.
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Fig. 17: Number of QoS Violations (left) and offloads (right)

for Redis (a) and Memcached (b) benchmarks.

others by introducing almost no violations for looser QoS

constraints and minimum number for stricter ones. For looser

QoS levels (0-2), Adrias achieves similar results to the All-

Local approach, by eliminating the majority of QoS violations,

while offloading almost 1/3 of the applications to the remote

memory. For stricter ones, Adrias provides comparable results

with All-Local by introducing an average of 5% and 20% more

QoS violations for Redis and Memcached respectively.

Adrias’ impact on data traffic: Last, we quantify the

amount of transmitted data over the FPGAs’ network in-

terconnection. Among all the examined scenarios, Adrias

reduces the amount of transmitted data by 45% (β = 0.8)
and 23% (β = 0.7) on average compared to Random and

Round-Robin schedulers respectively. We note that in cases

where Adrias offloads similar number of applications with the

other schedulers, it generates up to 55% less traffic on the

channel, revealing its tendency to favor less memory-intensive

applications to be allocated on the disaggregated memory.

VII. FURTHER DISCUSSION POINTS

Why Deep Learning? Modern cloud data centers suffer

from extensive and non-deterministic performance variability

due to interference, workload diversity and HW heterogene-

ity [74], thus mechanistic or model predictive control ap-

proaches form highly expensive solutions due to the extensive

simulations required to capture all the possible deployment

scenarios [12]. To this end, ML-centric cloud platforms are

attracting a lot of attention [9], [88], [95]. The rationale behind

the employment of DL techniques is the automatic pattern

discovery of neural networks; notably such patterns, able to

discriminate performance indicators, could not be effectively

set by typical human modeling or would require extensive

scenario analysis. In particular, LSTMs have been proven to

be extremely efficient on interpreting temporal patterns, i.e.,

interpreting system monitor time-series to actual performance

metrics [30], [65].

Ability of Adrias to unveil human-driven remarks.

During evaluation (Fig.16) we noticed that Adrias favors

offloading certain applications to the remote memory (e.g.,

gmm, lda). While these applications present overlapping

performance distributions between local and remote modes

(Sec. V-B1), Adrias avoids offloading ”non-overlapping” ones

(e.g., nweight), which also suffer from stacked interference

effects (R7). This verifies that Adrias properly models the

inherent characteristics of the examined applications.

Adrias & HW heterogeneity. Adrias assumes no prior

knowledge on the HW infrastructure, as any performance

variability due to heterogeneity will directly affect the moni-

tored metrics. For example, in case a system avails of both

remote DRAM and NVMe, these would be considered by

Adrias as two different memory tiers, with different latency

characteristics. There is no requirement for Adrias to be aware

of the actual medium backing each tier.

Adrias scalability. Due to the inherent HW limitations

of the ThymesisFlow prototype, Adrias was evaluated on a

single-node cluster. However, by design, Adrias is able to



scale on multiple nodes, where the monitoring (Watcher) and

performance prediction (Predictor) components are distributed

across the nodes of the cluster. The orchestration logic could

be centralized (e.g., be integrated directly in the control plane

of Kubernetes [13]), however, it should be adjusted in a

straightforward manner to account for cluster-level efficiency

in case of iso-QoS predictions between different nodes.

VIII. CONCLUSION

Hardware disaggregation is the next big step for effi-

cient management of cloud infrastructures. In this work, we

performed an extensive, interference-aware characterization

for a set of cloud applications and highlighted the hidden

pitfalls on a real memory disaggregated testbed. Driven by

this analysis, we designed Adrias, a resource orchestrator for

memory disaggregated cloud systems. Adrias leverages deep

learning techniques to decide the memory mode of deployed

applications. We showed that Adrias can efficiently utilize

remote memory with minimal performance overheads.
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T. Harris, and M. Herlihy, Eds. ACM, 2015, pp. 18:1–18:17.
[Online]. Available: https://doi.org/10.1145/2741948.2741964

[86] C. Wang, H. Ma, S. Liu, Y. Li, Z. Ruan, K. Nguyen, M. D. Bond,
R. Netravali, M. Kim, and G. H. Xu, “Semeru: A memory-disaggregated
managed runtime,” in 14th USENIX Symposium on Operating Systems

Design and Implementation, OSDI 2020, Virtual Event, November 4-6,

2020. USENIX Association, 2020, pp. 261–280. [Online]. Available:
https://www.usenix.org/conference/osdi20/presentation/wang

[87] J. Weiner, N. Agarwal, D. Schatzberg, L. Yang, H. Wang, B. Sanouillet,
B. Sharma, T. Heo, M. Jain, C. Tang, and D. Skarlatos, “TMO:
transparent memory offloading in datacenters,” in ASPLOS ’22: 27th

ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, Lausanne, Switzerland, 28 February

2022 - 4 March 2022, B. Falsafi, M. Ferdman, S. Lu, and T. F.
Wenisch, Eds. ACM, 2022, pp. 609–621. [Online]. Available:
https://doi.org/10.1145/3503222.3507731

[88] N. Wu and Y. Xie, “A survey of machine learning for computer
architecture and systems,” ACM Comput. Surv., vol. 55, no. 3, pp.
54:1–54:39, 2023. [Online]. Available: https://doi.org/10.1145/3494523

[89] R. Xu, S. Mitra, J. Rahman, P. Bai, B. Zhou, G. Bronevetsky, and
S. Bagchi, “Pythia: Improving datacenter utilization via precise contention
prediction for multiple co-located workloads,” in Proceedings of the 19th

International Middleware Conference, Middleware 2018, Rennes, France,

December 10-14, 2018, P. Ferreira and L. Shrira, Eds. ACM, 2018, pp.
146–160. [Online]. Available: https://doi.org/10.1145/3274808.3274820

[90] Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Characterizing facebook’s memcached workload,” IEEE Internet

Comput., vol. 18, no. 2, pp. 41–49, 2014. [Online]. Available:
https://doi.org/10.1109/MIC.2013.80

[91] Z. Yan, D. Lustig, D. W. Nellans, and A. Bhattacharjee, “Nimble
page management for tiered memory systems,” in Proceedings

of the Twenty-Fourth International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS 2019,

Providence, RI, USA, April 13-17, 2019, I. Bahar, M. Herlihy, E. Witchel,
and A. R. Lebeck, Eds. ACM, 2019, pp. 331–345. [Online]. Available:
https://doi.org/10.1145/3297858.3304024

[92] Z. Yu, Z. Bei, and X. Qian, “Datasize-aware high dimensional
configurations auto-tuning of in-memory cluster computing,” in Pro-

ceedings of the Twenty-Third International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS

2018, Williamsburg, VA, USA, March 24-28, 2018, X. Shen, J. Tuck,
R. Bianchini, and V. Sarkar, Eds. ACM, 2018, pp. 564–577. [Online].
Available: https://doi.org/10.1145/3173162.3173187

[93] F. V. Zacarias, R. Nishtala, and P. M. Carpenter, “Contention-aware
application performance prediction for disaggregated memory systems,”
in Proceedings of the 17th ACM International Conference on Computing

Frontiers, CF 2020, Catania, Sicily, Italy, May 11-13, 2020, M. Palesi,
G. Palermo, C. Graves, and E. Arima, Eds. ACM, 2020, pp. 49–59.
[Online]. Available: https://doi.org/10.1145/3387902.3392625

[94] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica, “Apache spark: a unified engine
for big data processing,” Commun. ACM, vol. 59, no. 11, pp. 56–65,
2016. [Online]. Available: http://doi.acm.org/10.1145/2934664

[95] B. Zhang, Y. J. Ong, and T. Nakamura, “Simpo: Simultaneous
prediction and optimization,” in IEEE International Conference on

Services Computing, SCC 2022, Barcelona, Spain, July 10-16, 2022, C. A.
Ardagna, H. Bian, C. K. Chang, R. N. Chang, E. Damiani, S. Dustdar,
J. Marco, M. P. Singh, E. Teniente, R. Ward, Z. Wang, F. Xhafa,
and J. Zhang, Eds. IEEE, 2022, pp. 120–122. [Online]. Available:
https://doi.org/10.1109/SCC55611.2022.00028

[96] Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delimitrou, “Sinan:
Ml-based and qos-aware resource management for cloud microservices,”
in ASPLOS ’21: 26th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, Virtual

Event, USA, April 19-23, 2021, T. Sherwood, E. D. Berger, and
C. Kozyrakis, Eds. ACM, 2021, pp. 167–181. [Online]. Available:
https://doi.org/10.1145/3445814.3446693

[97] Y. Zhang, D. Meisner, J. Mars, and L. Tang, “Treadmill:
Attributing the source of tail latency through precise load testing
and statistical inference,” in 43rd ACM/IEEE Annual International

Symposium on Computer Architecture, ISCA 2016, Seoul, South Korea,

June 18-22, 2016. IEEE Computer Society, 2016, pp. 456–468. [Online].
Available: https://doi.org/10.1109/ISCA.2016.47

https://doi.org/10.1145/2391229.2391236
https://doi.org/10.1109/COMST.2018.2834731
https://www.usenix.org/conference/osdi20/presentation/ruan
https://doi.org/10.1109/MM.2017.40
http://www.usenix.org/events/nsdi06/tech/schroeder.html
https://doi.org/10.1109/CLOUD53861.2021.00069
https://www.usenix.org/conference/atc19/presentation/shan
https://doi.org/10.1109/ICDCS.2018.00096
https://www.usenix.org/conference/osdi20/presentation/tang
https://www.usenix.org/conference/atc20/presentation/tsai
https://doi.org/10.1145/2741948.2741964
https://www.usenix.org/conference/osdi20/presentation/wang
https://doi.org/10.1145/3503222.3507731
https://doi.org/10.1145/3494523
https://doi.org/10.1145/3274808.3274820
https://doi.org/10.1109/MIC.2013.80
https://doi.org/10.1145/3297858.3304024
https://doi.org/10.1145/3173162.3173187
https://doi.org/10.1145/3387902.3392625
http://doi.acm.org/10.1145/2934664
https://doi.org/10.1109/SCC55611.2022.00028
https://doi.org/10.1145/3445814.3446693
https://doi.org/10.1109/ISCA.2016.47

	Introduction
	Related Work
	Disaggregated Memory Testbed
	Characterizing memory disaggregation
	Examined Workloads
	Limits of HW memory disaggregation on ThymesisFlow
	Workload characterization
	Affinity of system & workload metrics

	Adrias Design
	Watcher
	Stacked-LSTM Predictor
	Offline phase: Interference-Aware trace collection
	Offline phase - Prediction models training

	Orchestrator

	Evaluation
	Accuracy Evaluation
	System state prediction model
	Application performance prediction models

	Orchestration Evaluation

	Further Discussion Points
	Conclusion
	References

